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Abstract

With the aim to design a general learning framework for
detecting faces of various poses or under different light-
ing conditions, we are motivated to formulate the task as a
classification problem over data of multiple classes. Specif-
ically, our approach focuses on a new multi-class boost-
ing algorithm, called MBHboost, and its integration with a
cascade structure for effectively performing face detection.
There are three main advantages of using MBHboost: 1)
each MBH weak learner is derived by sharing a good pro-
jection direction such that each class of data has its own
decision boundary; 2) the proposed boosting algorithm is
established based on an optimal criterion for multi-class
classification; and 3) since MBHboost is flexible with re-
spect to the number of classes, it turns out that it is possible
to use only one single boosted cascade for the multi-class
detection. All these properties give rise to a robust system
to detect faces efficiently and accurately.

1. Introduction

Accuracy and efficiency are two of the most important is-
sues in evaluating a face detection system. For accuracy,
a number of learning techniques have been used to accom-
plish satisfactory results, including, e.g., SVMs [8], neural
network [9], multi-layer perceptron [15], Fisher linear dis-
criminant [18]. For efficiency, Viola and Jones [17] intro-
duce a framework to elegantly combine Adaboost with a
cascade scheme to detect faces in real time. Subsequently,
several variants have been proposed to extend or improve
the detection through a boosted cascade, [4], [6], [14].

The foregoing works consider mainly one type/class of
faces, e.g., frontal faces. Such a restriction may limit their
practical use because faces in images can occur with vari-
ous poses like in-plane or out-of-plane rotations, or under
various situations such as lighting conditions, expressions,
and occlusions. So, the visual appearances and features of
faces could vary significantly with respect to different sce-
narios/circumstances. It is therefore more reasonable to for-
mulate a face detection task as a multi-class learning prob-
lem. With that, we aim to address the task in a general man-
ner without compromising accuracy and efficiency.

1.1. Previous Work

According to the system structure and the mechanism, we
divide the following recent works that detect faces based on
multi-class learning into three categories.

View-based systems. In general, for such approaches,
multiple detectors are specifically designed and indepen-
dently trained so that each can deal with one particular class
of faces. A testing pattern will be examined in parallel by
all the detectors, and the outcome is the union of their re-
spective detection results. Schneiderman and Kanade [12]
train view-based detectors with features formed by a set
of wavelet coefficients. Their system has been shown to
achieve high accuracy rates for profile face detection. Nev-
ertheless, the computation time of a view-based system is
directly proportional to the number of detectors used, i.e.,
the number of face types it aims to handle.

Estimate-before-detect systems. By investigating the dis-
similarities among faces from different viewpoints, the pose
of an input pattern can be first estimated. Then, according to
the estimation, the pattern is dispatched to the correspond-
ing detector for further verification. Rowley et al. [10] use
two separate neural networks to carry out this strategy for
detecting faces with in-plane rotations. Jones and Viola [2]
apply the C4.5 decision tree followed by cascaded detec-
tors to handle faces with in-plane or out-of-plane rotations.
Clearly, using the scheme, the computation time is reduced
to one estimation and one detection instead of multiple par-
allel detections. The main disadvantage is that it is generally
difficult to establish a reliable (pose) estimator, especially
when the number of face classes is large, that guarantees
both low computational costs and high accuracy rates.

Classifier-sharing systems. The similarities among dif-
ferent types of faces can also be explored to enhance the de-
tection efficiency. Li et al. [3] propose a detector-pyramid
system to detect profile faces. Depending on its level in
the pyramid, each classifier can be shared by a collection
of face classes. In a related work [5], we have proposed
an evidence cascading scheme to detect faces with occlu-
sions. The idea is motivated by the fact that outside the oc-
cluded regions, faces with partial occlusions have the same
features as the regular frontal faces, and the information can
be used to design a classifier sharing mechanism to detect



faces with different areas of occlusions. The drawback of
the two systems is that the underlying relations among face
classes need to be identified before training. Consequently,
the resulting rules for classifier sharing may not be general
enough to be extended to detect other additional types of
faces, e.g., faces under different lighting conditions.

1.2. Our Approach
Instead of treating a general face detection task as solving
many individual binary classification problems, we propose
a multi-class boosting to directly address the underlying
difficulties. Specifically, the novelty of our approach con-
sists in three key techniques. First, we introduce the multi-
class Bhattacharyya (MBH) weak learners that is vector-
valued and applicable to simultaneously classify each class
of data. Unlike the direct sharing of a weak learner among
all classes, we propose to share a good projection direction
to take account of the diverse distributions from different
classes of data. Second, we establish the MBHboost al-
gorithm that optimally minimizes the weighted error upper
bound of all classes at each boosting iteration. The effec-
tiveness of the resulting multi-class boosting algorithm is
guaranteed by an optimal criterion that we will later prove
analytically. Third, since the MBHboost is flexible with re-
spect to the number of classes of the data, we can derive a
detection structure that uses only a single boosted cascade
for multi-class classifications.
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Figure 1: Nine different types/classes of profile faces.

2. Face Detection with MBHboost
Recall that a binary boosting algorithm is derived basi-
cally from iteratively separating the weighted positive and
weighted negative training data. To generalize this idea to
deal with multi-class data, we aim to establish an iterative
process, the MBHboost, that simultaneously separates the
weighted face and non-face data of each type. Thus the fo-
cal point of our discussion in this section is to explain how
MBHboost accomplishes the goal and retains its efficiency
in performing multi-class classifications. And that in turn
has to do with the use of MBH weak learners. For conve-
nience, we shall illustrate the formulation with an example
of profile face detection, where the face data are catego-
rized into nine types/classes, shown in Figure 1, according
to their rotated angles. Other scenarios of face detection
will be further explored in Section 4.

2.1. MBH Weak Learners
We focus on weak learners that involve 1-D projection di-
rections and derive their outputs by analyzing the projected
training data. Recent works, e.g., [5], [6], have demon-
strated these weak learners can be efficiently combined
to accurately detect frontal faces. Noteworthily, the real-
valued BH weak learners in [5] can be further extended into
vector-valued MBH weak learners, and we will give an ana-
lytic proof that the resulting MBHboost satisfies an optimal
criterion for multi-class classification.

Consider now a typical binary classification problem
for detecting one class of faces. Let training data D =
{(x1, y1), . . . , (x�, y�)} = D+(face) ∪ D−(non-face), and
Φ be the set of all possible projection directions. We also
need to maintain a weight vector wt over D at each boost-
ing iteration t. Through any projection φ ∈ Φ and w t, the
projected data φ(D) form two weighted histograms p+(φ)
and p−(φ) over a bounded segment of the real line with m
equal-size bins {bk}mk=1. More precisely, in each bin bk, the
two weighted histograms are computed as follows:

p+
k (φ) =

∑
i+k

wt(i) and p−k (φ) =
∑

i−k
wt(i), (1)

where i+(−)
k = {i |xi ∈ D+(−), φ(xi) ∈ bk}, the indexes

of positive (negative) training data projected into bin bk by
φ. In [5], the projection with the minimal Bhattacharyya
coefficient (BHC) between its two weighted histograms is
selected at each iteration. The choice has the property that
the error upper bound of boosting, i.e.,

∏
Zt in [11], will

be iteratively minimized if the output of the weak learner
associated with the selected projection φ is defined by

h(x) = ln
√

p+
k (φ)/p−k (φ) , if φ(x) ∈ bk. (2)

Indeed, each projection in Φ uniquely corresponds to a
rectangle feature, and therefore can be efficiently evaluated
by referencing the integral image in constant time [17]. In
Figure 2a, the projection φ1 is induced by a rectangle fea-
ture, and gives rise to two weighted histograms, p+(φ1) and
p−(φ1), shown in Figure 2b. The respective weak learner
can be constructed according to (2).

For the multi-class case, the example of detecting profile
faces serves as a good starting point to examine the core
of our proposed method. Let Γ = {A,B, ..., I} denote
the set of nine profile face types, shown in Figure 1, and
|Γ| = 9. For each X ∈ Γ, the type-X training set is labeled
as DX = {(xX

1 , yX
1 ), . . . , (xX

|DX |, y
X
|DX |)} = DX+ (type-

X face, i.e., yX = 1) ∪ DX− (non-face, i.e., yX = −1).
Clearly, DΓ =

⋃
X∈Γ DX . Analogous to the binary clas-

sification, a weight vector wX
t is updated over DX at each

MBHboost iteration. However, each projection φ over DΓ

now produces 18 weighted histograms (each type of train-
ing set forms two histograms). In Figures 2d, 2f, we respec-
tively plot six weighted histograms for illustration, yielded
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Figure 2: (a) A projection φ1 on a frontal face sample. (b) Two weighted histograms, p+(φ1) and p−(φ1), are derived from
the projected training set D = D+ ∪D− by φ1. (c) φ1 on face samples from profile face types A, C, and E , respectively.
(d) Six weighted histograms derived from DA, DC , and DE . (e) & (f) Histograms due to another projection φ2.

by projecting three classes of data with projections φ1 and
φ2 shown in Figures 2c, 2e. Understandably, what remains
to be addressed now is to come up with a definition to ap-
propriately link each projection φ over training data D Γ to
its corresponding multi-class weak learner.

In [3], [5], each weak learner used in the boosting proce-
dure is shared to detect a pre-defined subset of classes. That
is, expert knowledge is required to sort the subsets before
training the system. Torralba et al. [16] instead propose to
share a weak learner by the most suitable subset that can
be derived by searching among all possible 2 |Γ| − 1 can-
didates. Even if an approximated search is used, the num-
ber of candidates is still around O(|Γ|2). More critically
is that among these works, each weak learner is directly
shared, i.e., the decision boundary and the output value are
the same for all sharing classes, and it could restrict the use
of some discriminant weak learners. For instance, consider
the projection φ2 and the three pairs of histograms shown
in Figures 2e, 2f. Although φ2 is discriminant to separate
the positive and the negative data of each class, its output
value of each bin is hard to be shared since the three pairs
of histograms are far differently distributed.

In view of the issues described above, we relax the idea
of sharing a weak learner to sharing only a discriminant pro-
jection direction. Specifically, for each projection φ, the
vector-valued MBH weak learner f is defined as follows:

f(x) = [hA(x), ..., hI(x)] (profile faces), (3)

= [hX (x) | X ∈ Γ] (general case), (4)

hX (x) = ln
√

pX+
k (φ)/pX−

k (φ) if φ(x) ∈ bk, (5)

where X ∈ Γ, and the meaning of p
X+(−)
k (φ) is the same

as p
+(−)
k (φ) in (1), except the training data are limited only

to DX . From (4), an MBH weak learner consists of |Γ|
components that share a common projection φ: each com-
ponent learns its own decision boundary and computes the

output in each bin using the corresponding pair of weighted
histograms. In what follows, we summarize some useful
properties of MBH weak learners.

• An MBH weak learner is applicable to all classes of
data. No expert knowledge or search techniques are
needed to identify a subset of classes for sharing.

• Unlike direct sharing in [3], [5], [16], each MBH com-
ponent independently learns outputs for each class of
training data, and consequently achieve better classifi-
cation efficiency and flexibility.

• On the other hand, because all MBH components share
a same projection, they reference the same bin index k
in (5) for an arbitrary pattern x. Furthermore, since
the output value of each component for any bin k has
been learned in the training phase, the main computa-
tion cost of evaluating an MBH weak learner in test-
ing is simply to find the value of k. In other words,
the extra computation cost to extend weak learners to
multi-class in our scheme is relatively low.

2.2. An Optimal Criterion
Having described the details of MBH weak learners, we are
now ready to formalize the multi-class boosting algorithm.
Our discussion will focus on an optimal criterion that is the
cornerstone of the efficiency of the proposed MBHboost.
We first begin with a definition to measure the difficulty of
classifying each class of training data.

Definition 1 At boosting iteration t, the difficulty to clas-
sify the type-X data of a multi-class training set is given

by ΔX
t =

∑|DX |
i=1 exp

(−yX
i HX

1:t−1(xX
i )

)
, where HX

1:t−1 =∑t−1
τ=1 hX

τ is the intermediate classifier for DX , derived by
combining the type-X components of the t − 1 MBH weak
learners selected in previous iterations.



Algorithm 1: MBHboost

Input : Training data DΓ; Projection set Φ; Number
of iterations T .

Output : A vector-value MBH classifier F .

wX
1 (i) = 1/|DX | , ∀i = 1, 2, . . . , |DX | and ∀X ∈ Γ;

for t← 1, 2, . . . , T do
1. Determine the optimal φt by solving (6);
2. Derive MBH weak learner ft based on (4), (5);
3. wX

t+1(i) ← wX
t (i) exp

(−yX
i hX

t (xX
i )

)
/ZX

t ,
∀i = 1, 2, . . . , |DX | and ∀X ∈ Γ; (Note ZX

t is a
normalization factor to make wX

t+1 a distribution.)

Output F =
∑T

t=1 ft = [HA, HB, HC , . . . ]
= [HX =

∑T
t=1 hX

t | X ∈ Γ];

The ΔX
t so defined is indeed proportional to the expo-

nential loss of using HX
1:t−1 to classify the type-X data.

Thus it serves a reasonable indicator to measure the classifi-
cation complexity for type-X training data up to iteration t.
With Definition 1, we can formulate the following criterion
to iteratively derive an optimal projection φt for construct-
ing the corresponding MBH weak learner f t.

Theorem 1 MBHboost is guaranteed to iteratively mini-
mize the weighted error bound for multi-class classifica-
tions if φt stated in step 1 of Algorithm 1 is given by:

φt = argmin
φ∈Φ

∑
X∈Γ

ΔX
t ×BHCX

t (φ), (6)

where BHCX
t (φ) =

∑m

k=1

√
pX+

k (φ)pX−
k (φ). (7)

Proof: By recursively applying the relation between wX
t

and wX
t+1 in step 3 of Algorithm 1, we have

ΔX
t =|DX |

|DX |∑
i=1

wX
1 (i) exp(−yX

i

t−1∑
τ=1

hX
τ (xX

i )) (8)

=|DX |ZX
1

|DX |∑
i=1

wX
2 (i) exp(−yX

i

t−1∑
τ=2

hX
τ (xX

i )) = · · ·

=|DX |ZX
1 · · ·ZX

t−1

|DX |∑
i=1

wX
t (i) = |DX |

t−1∏
τ=1

ZX
τ .

On the other hand, the Bhattacharyya coefficient can be
shown to satisfy BHCX

t (φ) = ZX
t /2 (refer to equation

(3) in [5] for details). Thus the criterion in (6) becomes

∑
X∈Γ

ΔX
t ×BHCX

t (φ) =
1
2

∑
X∈Γ

|DX |
t∏

τ=1

ZX
τ . (9)
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Figure 3: For a given average error rate, say 0.1, it takes 8
weak learners for an MBHboost detector. To achieve the
same rate in testing, it requires 9 weak learners. In the
case of using separately-trained detectors, it takes 45 and
54 weak learners, respectively.

From the theorem, the criterion (6) at each iteration t is
to choose an optimal 1-D projection direction φ t that mini-
mizes the weighted error upper bound of multi-class boost-
ing (9), where the weight of each class depends on the num-
ber of its training samples. When all classes have the same
number of data, the criterion is reduced to minimizing an
average error bound of all classes, i.e.,

∑
X∈Γ

∏t
τ=1 ZX

τ ,
and when the training data are of single class of positive
and negative ones, it becomes the error upper bound that
Adaboost is designed to iteratively minimize.

Another advantage of MBHboost is that it usually takes
fewer weak learners to carry out a multi-class classification
than those required by a typical view-based approach. Note
that each component of an MBH classifier F implicitly cor-
responds to a detector for its own class of data. Therefore,
via the sharing of φt at each t, all the component-wise detec-
tors, HX =

∑T
t=1 hX

t , can be trained jointly. Conversely,
each view-based detector needs to be trained separately for
a particular class of training data. In Figure 3, the view-
based detectors for the example frontal face detection are
independently derived using Algorithm 1 with each single
class of training data. Though, class-wise, a detector trained
separately has a faster convergency speed, the total number
of weak learners required in all |Γ| = 9 detectors for achiev-
ing a given error rate is much larger. In the plot, we record
the training and testing error rates at each iteration for the
two ways of training. By considering some fixed average
error rates, say 10%, 5%, and 2%, it is clear that training
jointly is more efficient and uses fewer weak learners.

3. The Detection Architecture

To detect faces from various scenarios in real time, we con-
sider a detection structure based on the boosted cascade
[17]. More specifically, with MBHboost we need to train



Algorithm 2: Multi-Class Cascade: Training

Input : Training data DΓ; Images without faces Q;
μ, ν: target detection, false-positive rate.

Output : A cascade of MBH classifiers {F1, ..., Fs}.
k← 1; Γk ← Γ;
while Γk �= ∅ do

With DΓk and Φ, use Algorithm 1 to derive Fk =
[ HX

k | X ∈ Γk ] s.t. each HX
k meets (μ, ν);

foreach X ∈ Γk do
DX+ ← {x | x ∈ DX+ ∧HX

k (x) ≥ θXk };
DX− ← False-Positives from DX− or

from Q such that |DX−| = |DX+|;
if not enough False-Positives then

sX ← k; Γk ← Γk − {X};
Γk+1 ← Γk; k ← k + 1;

only one cascade for the multi-class detection. This is in
contrast to the systems described in [2], [3], [5] that sev-
eral cascades are deployed for detecting different classes of
faces/objects, and thus additional mechanisms are needed to
choose the most appropriate cascade for each input pattern.

Through a boosted cascade, the task of face detection be-
comes a series of classification problems. In our case, there
are three key factors to be carefully planned during train-
ing to ensure good detection rates, including 1) the number
of MBH weak learners used in each stage k; 2) the type-
specific threshold θX

k for HX
k of the classifier Fk; and 3)

the total number of stages, s, for implementing the cascade.
In addition, besides the training data DΓ we also prepare a
set Q consisting of images that contain no faces, where its
function will be self-evident as we describe the approach.
Suffice it to say now that Q is used to generate new non-
face data by bootstrap over the course of training.

Training. Let μ denote the target detection rate and ν be
the maximal false positive rate for learning a classifier Fk

at stage k of the cascade structure in Algorithm 2. Thus
Fk = [HX

k |X ∈ Γk] can be derived by jointly training and
by tuning the thresholds θX

k to ensure all HX
k have detection

rates above μ and false positive rates below ν. (Empirically,
μ is set between 99.5% ∼ 99.9%, and ν is about 40%.) This
would give us a way to determine the number of MBH weak
learners needed to construct a desirable Fk. In practice the
value of θXi is often negative, and a pattern x is considered
a type-X face at stage k iff HX

k (x) ≥ θXk .
Note that the number of components in Fk is not fixed

and is non-increasing as k becomes larger. This is due to
different degree of difficulty in classifying each class of
data. Specifically, the completion of the type-X training

Algorithm 3: Multi-Class Cascade: Testing

Input : A test pattern x; Face classes Γ;
A cascade of detectors {F1, ..., Fs};
Number of stages, sX , ∀X ∈ Γ.

Output : A vector of boolean outputs, output(Γ).

k ← 1; Λ← Γ;
while Λ �= ∅ do

Jointly evaluate HX
k (x), ∀X ∈ Λ;

foreach X ∈ Λ do
if HX

k (x) < θXk then
output(X )← False; Λ← Λ− {X};

else if k = sX then
output(X )← True; Λ← Λ− {X};

k ← k + 1;

over the multi-class cascade is signaled by the condition
when not enough non-face data can be generated from Q
to ensure |DX+| = |DX−| for the subsequent stage. These
additional non-face data are obtained by applying bootstrap
to Q to generate false positives that pass all the k type-X
components, i.e., HX

1 , HX
2 , . . . , HX

k . Each time a type-X
training is completed at some stage k, we have sX = k, and
delete X from Γk. The training procedure continues with
the updated data, and eventually finishes when Γk becomes
empty. The total number of stages in the cascade can then be
determined by s = max{sX | X ∈ Γ}. We conclude with
a remark that our proposed MBHboost is flexible enough
for handling the stage-wise variable number of classes of
training data, and that makes it very convenient to deal with
multi-class classifications with one single cascade.

Testing. A test pattern x is considered a type-X face if it
passes all the type-X components of detectors from the first
to the sX th stages. Like a view-based system, our method
provides a vector of boolean responses, each element indi-
cating whether x is a face sample of one particular class.
(See Algorithm 3.) Sometimes an output vector could have
more than one positive element. Nevertheless, since a face
may be detected in multiple nearby sub-windows, such mat-
ters can be easily resolved by voting or by measuring the
detection confidences (margins).

4. Other Applications
In this section, we look at other cases of face detection.

With In-Plane Rotations. We divide all possible (in-
plane) rotated faces into 12 classes according to the angles
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Figure 4: Four examples of face classes Γ.

of rotations. As plotted in Figure 4a, they are distinguished
by multiples of ±30◦ in-plane rotations. Similar to the case
of profile face detection, the number of classes needed for
smoothly detecting rotated faces depends on the robustness
of the base detector, where we use classifiers derived by
MBHboost. Of course, for that matter, the tradeoff between
detection rates and efficiency also plays an important role.

Under Various Lighting Conditions. Techniques such
as illumination gradient correction and histogram equal-
ization have been incorporated into detectors, e.g., [8],
[9], [15], to reduce the effects of lighting on detection
rates. To some degree, correcting illumination gradients
simply excludes the impacts on the pattern appearances due
to extreme incident angles of light sources, and applying
histogram equalizations mainly eliminates the variations
caused by different lighting magnitudes. However, the two
operations are impractical for a real-time system because
their computational costs will dominate a detection process.
With integral images, Viola and Jones [17] achieve lighting
normalization via calculating the mean and standard devia-
tion of the input pattern. In this way, the normalization cost
is significantly reduced, but the effect of extreme incident
angles of light sources on the pattern appearance remains
unsolved. We instead address the problem of lighting con-
ditions by categorizing the incident angles of a light source
into, say, five classes (see Figure 4b), and then construct a
multi-class cascade to efficiently account for the issue.

With Partial Occlusions. The appearances and features
of occluded faces can be significantly different from faces
without occlusions. In [5], the detector is designed to han-
dle eight kinds of occluded faces. And the training data of
occluded faces are simply derived from faces without occlu-
sions by excluding features from the predefined occluded
regions. The approach is, though effective, difficult to be
generalized for detecting faces of other scenarios. With our
proposed method, the same eight kinds of occluded faces in

[5] can be robustly detected, where, in Figure 4c, the dark
regions denote occlusions, and face data within the same
class have occlusions at the same location.

With Various Facial Expressions. Unlike the foregoing,
this is indeed an easier case since facial expressions only
slightly increase the detection difficulty (see Figure 4d).
The main purpose we include the example here is to demon-
strate the generality of our approach. We shall not discuss
this aspect of detections further.

5. Experimental Results

We experiment our system with all the described scenar-
ios of multi-class face detection. In addition, we compare
our results with those yielded by a widely used strategy, a
view-based system, of which several cascades of detectors
are derived by separately training with each corresponding
class of data, and a test pattern will be examined by all cas-
cades. Since MBHboost is also applicable for training with
one single class of positive and negative data, we have used
Algorithm 2 to build the |Γ| view-based cascades. Thus, the
comparisons between the two approaches will be on a fair
ground because the two respective systems are established
using the same training and testing data, and the same pro-
jection direction set Φ.

The face data are collected from a number of databases,
including MIT-CBCL, AR [7], PIE [13], Yale [1], and
are created with different poses, orientations, expressions,
lighting conditions, and with or without occlusions. We
then rotate, crop, and re-scale the face images into the reso-
lution of 24×24 pixels. The initial training set of each class
consists of 10, 000 face samples that are properly selected
from these candidates and 10, 000 nontrivial non-face sam-
ples. For the supplementary set Q, about 20, 000 large-size
images that do not contain any faces are gathered for gener-
ating non-face training data, through the stage-wise training
of Algorithm 2, by the bootstrap technique.

All our testings are run on a P4 3.06 GHz PC, and some
of the results are presented in Figure 6. We use the dataset in
[12] for profile face detection, and the other one in [10] for
rotated face detection. To detect faces under various light-
ing conditions or with partial occlusions, we respectively
collect additional 1, 000 faces (either under various light-
ing conditions or with occlusions) and 1, 000, 000 nontriv-
ial non-face samples as data for validation. The quantitative
comparisons reported here emphasize the aspects of accu-
racy and efficiency. Judging from the ROC curves depicted
in Figure 5, the proposed method produces comparable per-
formances to those yielded by the view-based system in ac-
curacy. However, our approach is significantly more effi-
cient, as summarized in Table 1. (Of note, the view-based
system is trained with MBHboost.)
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Figure 5: ROC curves. (a) Profile face detection on the dataset in [12]. (b) Rotated face detection on the dataset in [10]. (c)
Detecting faces under various lighting conditions. (d) Detecting faces with partial occlusions.

Table 1: Quantitative results in terms of speedup and fps.

Application Profile Rotation Lighting Occlusion

class #, |Γ| 9 12 5 9
#-times 3.74 4.96 2.96 3.85

(320x240) fps 13.8 8.6 26.1 15.2
#-times speedup by our method over the view-based.

6. Discussion
Through the sharing of projection directions and the use
of only one cascade, our face detection algorithm has been
shown to have the advantages of generality, efficiency, and
accuracy. Compared with other related works, the proposed
method outperforms those described in [2], [10]. Though
our accuracy for detecting profile faces falls behind that re-
ported in [12], our system achieves real-time performance
and is applicable to detect faces of many scenarios.
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Figure 6: Detection results derived by applying our face detector to some testing images. (a) Profile face detection. (b)
Rotated face detection. (c) Detecting faces with various lighting conditions. (d) Detecting faces with partial occlusions.


